
Eur. Phys. J. B 18, 193–196 (2000) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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Rapid Note

Band structure and atomic sum rules for X-ray dichroism
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Abstract. Corrections to the atomic orbital sum rule for circular magnetic X-ray dichroism in solids are
derived using orthonormal LMTOs as a single-particle basis for electron band states.

PACS. 78.70.Dm X-ray absorption spectra – 78.20.Ls Magnetooptical effects – 71.15.-m Methods of
electronic structure calculations

Atomic physics affords a theory of X-ray dichroism by pro-
viding a set of sum rules which relate dichroic intensities,
integrated over a finite energy interval, to the ground-
state expectation value of effective one-electron operators
[1–3]. For circular magnetic X-ray dichroism, that is the
difference in absorption between right- and left-circularly
polarised photons in a system with a net magnetisa-
tion, the effective operators coincide with spin and orbital
multipoles [3,4].

The spherical symmetry and the discreteness of the
spectrum governing the atomic results do not hold for an
atom in a solid, where the spin and angular-momentum
character selected by a specific X-ray transition is spread
out over a band of final states. This difference has hindered
the identification of a well-defined connection between
the atomic sum rules and band-structure calculations of
magnetic X-ray dichroism [5]. Except in cases of strong
electronic correlations, such calculations have been very
successful in simulating experimental absorption spectra
[6,7]. It therefore seems desirable to derive a band-
structure formalism which exhibits the atomic sum rules
as the dominant term. This should be important not only
for the interpretation of X-ray dichroism in cases where
current density-functional band theory works, but also as
a prerequisite for understanding dichroism in strongly cor-
related materials. The current paper is an attempt in this
direction.

By leaving a localised hole, inner-shell photo absorp-
tion selects a specific site in the solid, which we shall label
by R = 0. A local process is thus expected to control
the excitation, to leading order. Additional contributions
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should emerge when the remaining sites in the lattice are
taken into account, that is, when electron delocalisation is
included. In this case, a minimal set of orthonormal linear
muffin-tin orbitals (LMTOs) provides a suitable single-
particle basis [8–10].

The macroscopic quantity of interest is the polarisa-
tion and energy dependent extinction coefficient, κε(ω)
[12]. In a microscopic description, this is given by

κε(ω) = 2π (c/ω)2N Imfε(ω) ,
where fε(ω) stands for the forward scattering amplitude,
as determined by the p ·A coupling between X-rays and
electrons. Photon energy (in units of ~) and polarisation
are identified by ω and ε, respectively; N denotes the
number of excitable core electrons per unit volume. Only
electric-dipole transitions will be retained between spin-
orbit coupled inner orbitals, ϕn̄l̄ j̄m̄j (r, s), localized around
site R = 0, and spin-polarized, spin-orbit coupled band
states, ψk (r, s) [13]. We consider only magnetic circular
dichroism integrated over the two partners

(
j̄ = l̄ ± 1

2

)
of a given spin-orbit split inner shell

(
n̄l̄
)
. For this, we have∫ ∼ εc−εn̄ l̄ l̄− 1

2

∼ εF−εn̄ l̄ l̄+ 1
2

[
κ+(ω)− κ−(ω)

]
dω =

(2π)3

3
N cos θ

∑
k

〈Ψ0|ak a†k|Ψ0〉
∑
j̄=l̄± 1

2

j̄∑
m̄j=−j̄[∣∣∣〈ψk |Q1 1|ϕn̄l̄j̄m̄j

〉∣∣∣2 − ∣∣∣〈ψk |Q1−1|ϕn̄l̄j̄m̄j
〉∣∣∣2] . (1)

Here, εF − εn̄ l̄ l̄± 1
2

are the two threshold energies and εc

is a cut-off, positioned far above the top of the valence
band so that nothing would change if εc were increased
by the spin-orbit splitting, εn̄ l̄ l̄+ 1

2
− εn̄ l̄ l̄− 1

2
of the inner

level. The superscripts ± identify circular polarisations,
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and Q1M = eY1M(r̂) r is the electric dipole moment; θ is
the angle between photon wave vector and magnetization
direction (orbital quantisation), which we take along the
z axis; Ψ0 denotes the ground state of the system, and a†k
is a fermionic creation operator for band states.

To evaluate
〈
ψk |Q1M |ϕn̄l̄j̄m̄j

〉
, we use

ϕn̄l̄j̄m̄j (r, s) =
∑
m̄ m̄s

C
j̄ m̄j
l̄ m̄; 1

2 m̄s
ϕn̄l̄(r)Yl̄m̄(r̂)ξm̄s (s) , (2)

for the inner orbitals, that is a two-component function
with the same radial dependence, ϕn̄l̄(r), for j̄ = l̄− 1

2 and
l̄ + 1

2 . Notice that this is an excellent approximation as
the radial probability densities, 4πr2[fκ(ε, r)2 + gκ(ε, r)2],
for κ=l and κ= − l − 1 differ appreciably only close to
the nucleus where they are small [14]; here fκ(ε, r) and
gκ(ε, r) are the solutions of the radial Dirac equations
with κ=l, ε=εn̄ l̄ l̄− 1

2
and κ= − l − 1, ε=εn̄ l̄ l̄+ 1

2
for the

two partners, respectively. For ψk we use an expansion in
spin functions times spherical harmonics centered at the
absorption site

ψk (r, s) =
∑
lmms

uilmms,k φl(r)Ylm (r̂) ξms (s) . (3)

The inner orbitals are so localized that, in the region rele-
vant to the integral

〈
ψk |Q1M |ϕn̄l̄j̄m̄j

〉
, the self-consistent

field for a band electron is dominated by the Hartree con-
tribution, which is centrally symmetric and independent
of k. As a consequence, the coefficients in expansion (3)
factorise into normalization constants, uilmms,k, and radial
functions, φl(r), which depend only on the magnitude of
angular momentum about the absorption site. Regarding
relativistic effects, the argument given above for neglect-
ing the j = l ± 1

2 dependence of the inner radial function
holds also for the radial functions of the band states. The
exchange-correlation potential does depend on the spin
and possibly the orbital character but, in the inner re-
gion, it amounts to ms- and possibly lm-dependent shifts,
which are small compared with the radial kinetic energy,
εk − v (r) − l (l + 1) /r2, in that region. Compared with
that kinetic energy, the band-energy range, εc−εF, is also
small.

We now write the difference between the squared
matrix elements for right- and left-circularly polarized
light as
√

2
∑
M=±1

C1M
1M;10

〈
ψk |Q1M |ϕn̄l̄j̄m̄j

〉〈
ϕn̄l̄j̄m̄j |Q

∗
1M |ψk

〉
,

insert expressions (2) and (3), and apply the Wigner-
Eckart theorem. Notice that, owing to the sum over
j̄ in (1), the resulting expression is spin independent.
The angular part is then recoupled with use of the
transformation [15]

(−1)M+l−l̄

2l̄ + 1

∑
m̄

C l̄m̄lm;1−M C l̄ m̄l′m′;1−M′ =∑
l′′m′′

(−1)l
′′−m′′+l−m Cl

′′−m′′
1M; 1−M′ C

l′′m′′

l′m′; l−m

{
l 1 l̄
1 l′ l′′

}
,

with l′′ = 0, 1, 2, corresponding to isotropic absorption,
circular, and linear dichroism, respectively. Hence, we ob-
tain the result∫ ∼εc−εn̄ l̄ l̄− 1

2

∼εF−εn̄ l̄ l̄+ 1
2

[
κ+(ω)− κ−(ω)

]
dω =

π2e2N cos θ
∑
l=l̄±1

l− l̄
2l + 1

Rl1l̄
〈
Ψ0

∣∣Llz∣∣Ψ0

〉
, (4)

with the radial integral over the inner region defined as

Rl1l̄ ≡
(∫ ∞

0

ϕn̄l̄ (r) r φl (r) r2dr
)2

, (5)

and
∫∞

0 ϕn̄l̄ (r)
2
r2dr ≡ 1. The operator Llz is given by

Llz =
∑
k

aka
†
k

∑
m

m
∑
ms

∣∣uilmms,k∣∣2 . (6)

The individual normalisations of (5) and (6) are irrele-
vant when simulating the integrated dichroism (4). This
is because normalization of the band states to unity in
the solid merely fixes the normalization of the product
uilmms,k φl(r) in (3). The usefulness of atomic sum-rules,
however, stems from a separation into an atomic factor
which is independent of the magnetisation direction, and a
remainder which, for circular dichroism, is approximately
the ground-state orbital angular momentum of the excited
atom. Suppose normalisations could be defined such that
uilmms,k were equal to the R = 0 component of the eigen-
vectors, u⊥Rlmms,k, for the states

ψk (r, s) =
∑

Rlmms

χ⊥Rlm (r−R) ξms (s)u⊥Rlmms,k , (7)

in a representation of orthonormal orbitals. Then, from
(4) and (6),

〈
Ψ0

∣∣Llz∣∣Ψ0

〉
would be the expectation value

of the orbital angular momentum in the ground state, and
the atomic sum rule would also hold in the solid.

Our use of LMTOs is motivated by the follow-
ing features: they constitute a minimal basis whose
orthonormal representation and spherical-harmonic ex-
pansions about neighboring sites are well known;
their use in practical computations is well established
[8–11], even for systems with appreciable electronic cor-
relations [16], and for systems with spin-orbit cou-
pling and spin-polarization [17]; the simple formalism
for the orthonormal set, which we shall use below, was
recently re-derived without resort to the approxima-
tions of taking the interstitial kinetic energy equal to
zero and of dividing space into atomic spheres [9–11].
Moreover, the LMTOs have recently been generalized to
Nth-order MTOs spanning the states in a broad energy
range, the accuracy and range increasing with N , for a
fixed basis-set size [11].

MTOs are derived from an MT-potential, i.e. a
superposition of atom-centered spherically symmetric
potential wells with ranges limited to about 0.7 times



R. Benoist et al.: Band structure and atomic sum rules for X-ray dichroism 195

the distance to the nearest neighbour [10]. In accordance
with (7), we shall use MTOs derived from a spin- and
orbital-independent potential: V (r) ≡

∑
R vR (|r−R|).

To construct an LMTO, one first solves the appropriate
radial Schrödinger or scalar-relativistic Dirac equation
for various energies in the band region, thus obtaining the
radial functions φRl (ε, r). Each of these is then multiplied
by Ylm (r̂) and, if we are using the atomic-spheres approx-
imation (ASA), truncated outside the atomic sphere. If
not, they are augmented continuously with tails; these are
localized (screened) solutions of the wave equation with
the correct energies and are excluded from any inner re-
gion [9–11]. As a result, we obtain the so-called truncated
or kinked partial waves, φRlm(ε, r−R). Now, the LMTO,

χRlm (r−R) ≡
φRlm (r−R) +

∑
R′l′m′

φ̇R′l′m′
(
r−R′

)
hR′l′m′,Rlm , (8)

centered at site R and with spherical-harmonic char-
acter lm, is defined as the corresponding partial
wave, taken at energy εν at the centre of interest,
plus a smoothing cloud of the first energy derivatives,
φ̇R′l′m′

(
r−R′

)
≡ ∂φR′l′m′

(
ε, r−R′

)
/∂ε
∣∣
εν
, of partial

waves at their own and at neighboring sites. (Here, and
in the following, an omitted energy argument implies
that ε ≡ εν .) In (8), the expansion coefficients, h, form
a Hermitian matrix which is approximately the band
Hamiltonian with respect to εν , for the MT-potential
used to generate the LMTO set. Specifically, since the
LMTO is smooth, we may operate with (−∆+V − εν) on
each term in (8) to obtain (−∆+V −ε)|φ(ε)〉 = 0. Energy
differentiation then yields (−∆ + V − ε)|φ̇(ε)〉 = |φ(ε)〉
and, as a result,

(−∆+ V (r) − εν)χRlm(r−R) = (9)∑
R′l′m′

φR′l′m′
(
r−R′

)
hR′l′m′,Rlm .

As ∂φ(ε, r)T (ε)/∂ε = φ̇ (r)T + φ (r) Ṫ , with T=1, chang-
ing the energy-dependent normalization of a partial wave
changes the shape of its energy derivative function by
adding some amount of φ(r) to it. This in turn changes
the shape of the LMTOs via equation (8), but not the
Hilbert space spanned by them. If each partial wave
is normalized to one, we obtain a nearly orthonormal
set since, in that case, the corresponding φ̇Rlm(r) is
orthogonal to φRlm(r), as energy differentiation will
reveal. Neglecting the overlap between partial waves at
different sites (ASA), or using Löwdin orthogonalisation
[9–11], one obtains

〈φRlm | φR′l′m′〉 = δRR′δll′δmm′ ,
〈
φRlm | φ̇R′l′m′

〉
= 0.

Insertion into (9) and (8) finally shows that, in the nearly
orthonormal representation, the LMTO Hamiltonian and
the overlap matrices are given by 〈χ|−∆+V − εν|χ〉 = h
and 〈χ | χ〉 = 1 + hph, respectively. (The off-diagonal
elements of the matrix p ≡ 〈φ̇ | φ̇〉 may be neglected.)

The truly orthonormal set is therefore∣∣χ⊥〉 =
∣∣φ⊥〉+

∣∣∣φ̇⊥〉h⊥ =
∣∣χ⊥〉 (1 + hph)−

1
2

=
(
|φ〉+

∣∣∣φ̇〉h) (1 + hph)−
1
2 , (10)

where the expansion matrix,

h⊥ ≡ (1 + hph)−
1
2 h (1 + hph)−

1
2 , (11)

is the band Hamiltonian without spin polarization and
spin-orbit coupling, and where

∣∣φ⊥〉 = |φ〉 (1 + hph)
1
2 and∣∣∣φ̇⊥〉 =

(∣∣∣φ̇〉− |φ〉 hp) (1 + hph)
1
2 .

Next, we may work out the matrix elements of the ex-
change splitting and spin-orbit coupling in the orthonor-
mal representation (10), add them to εν + h⊥, and diago-
nalize to find the eigenvalues, εk, eigenvectors, u⊥Rlmms,k,
and band states (7). Expanding the latter in spherical har-
monics about the excited site using (10), we are finally
able to identify the coefficients uilmms,k in (3). (As usual,
an omitted subscript R implies that R=0.) At first glance,
it seems as if two radial integrals in (5) are needed: one
involving φl (r), as contributed by the head of the LMTO,
and the other involving φ̇l (r), as contributed mainly by
the tails of neighboring LMTOs. However we observe that,
when integrating the radial equation for the l-channel out-
wards we may use the same initial condition for all en-
ergies. Hence, we obtain an energy-derivative function,
φ̇il(r), which is essentially excluded from the inner region,
and whose contribution to the integral (5) may therefore
be neglected [18]. Since this procedure amounts to choos-
ing a particular energy-dependent normalisation of the
corresponding radial function, φil(ε, r), the energy deriva-
tive function, φ̇il (r) , must be a particular linear com-
bination of the Ylm projections of φlm(r) and φ̇lm (r) .
These projections are independent ofm in the ASA, where
φlm (ε, r) = φl (ε, r) Ylm (r̂), but only approximately in-
dependent when φlm (ε, r) is a Löwdin orthonormalized
kinked partial wave. In the latter case, the m-dependence
may be minimized through adjustment of the screening
[10,11]; this dependence will be neglected in the present
paper. Choosing to normalize φilm (ε, r) to one at εν , we
can express the linear combination which does not con-
tribute to the radial integral (5) as a projection onto the
orthonormal

(
φ, φ̇

)
set

∣∣∣φ̇i〉 =
∣∣∣φ̇〉+ |φ〉

〈
φ | φ̇i

〉
≡
∣∣∣φ̇〉+ |φ〉 oi. (12)

Here, 〈φ | φ̇i〉 ≡ oi is a matrix whose elements vanish
unless R=R′=0 and l=l′ = l̄ ± 1, and whose off-diagonal
elements are neglected together with any m-dependence.
We thus eliminate φ̇lm (r) from (10) and find

∣∣χ⊥〉 =
[
|φ〉
(
1− oih

)
+
∣∣∣φ̇i〉h] (1 + hph)−

1
2 .



196 The European Physical Journal B

(One should keep in mind that |φ̇i〉 = |φ̇〉 unless R = 0
and l = l̄ ± 1.) Identification of (7) with (3) yields

uik = (1− oih)(1 + hph)−
1
2u⊥k

= (1− oih⊥ − 1
2
h⊥ph⊥ + ...)u⊥k . (13)

and, hence, the final result for use in (6) is∣∣uilmms,k∣∣2 =
∣∣u⊥lmms,k∣∣2

−2 Re

{
u⊥∗lmms,k o

i
l

∑
R′l′m′

h⊥lm,R′l′m′u
⊥
R′l′m′ms,k

}

+

∣∣∣∣∣oil ∑
R′l′m′

h⊥lm,R′l′m′ u
⊥
R′l′m′ms,k

∣∣∣∣∣
2

−Re

{
u⊥∗lmms,k

∑
R′l′m′

(
h⊥ph⊥

)
lm,R′l′m′

u⊥R′l′m′ms,k

}
+ ...

(14)

The first term is contributed by LMTO heads only and
gives the atomic sum rule. Of the terms with R′ 6= 0,
the ones on the second line are LMTO head-tail con-
tributions, and those on the remaining lines are tail-tail
contributions. However, the sum of the terms on the
second and third lines may also contribute to the atomic
sum rule, as they depend on εν . (This dependence is
cancelled by the εν dependence of the radial integral
brought about by φl (εν , r) in (5). Notice that to be able
to neglect the m-dependence of the valence orbital in the
radial integral, we have chosen this orbital as a partial
wave rather than an LMTO, which has longer range.)
To clarify this point, let us assume that the spin-orbit
interaction is smaller than the exchange splitting and
that the latter is fairly independent of k. In this case,∑

R′l′m′

h⊥lm,R′l′m′u
⊥
R′l′m′ms,k ≈ (εk − εν)u⊥lmms,k,

where εk is the (doubly degenerate) band without spin-
orbit and exchange couplings, and (14) reduces to∣∣uilmms,k∣∣2 ≈ [1− (εk − εν) oil

]2 ∣∣u⊥lmms,k∣∣2
−Re

{
u⊥∗lmms,k (εk − εν)

∑
R′l′m′

(
h⊥p

)
lm,R′l′m′

u⊥R′l′m′,k

}
·

We now realize that the deviation from the atomic sum
rule is the contribution to the integrated dichroism (4)
stemming from the second and further lines of (14), after
they have been minimized with respect to εν , that is, when
εν is chosen as the centre of gravity of the unoccupied part
of the l-projected density of band states

ενl =
∑
k εkN

l
k∑

kN
l
k

, N l
k ≡

〈
Ψ0

∣∣∣aka†k∣∣∣Ψ0

〉 ∑
mms

∣∣u⊥lmms,k∣∣2 .
This choice of εν is the one which also minimizes the errors
of the LMTO method. (When an l-independent εν is used,
the oilRl1l̄/(2l+ 1)-weighted average should be chosen).

To summarise: to estimate the accuracy of atomic sum
rules for X-ray dichroism in solids, we have examined the
problem of X-ray absorption by band electrons, with em-
phasis on the interpretation of the total intensity of spec-
tra obtainable with circular polarisation in magnetic sys-
tems. Using an orthonormal set of LMTOs, we have found
corrections to the atomic results in the form of energy mo-
ments of the band. Applications of the approach to unpo-
larised and linear-dichroic spectra, together with a numer-
ical determination of the actual size of the corrections in
specific cases will be reported elsewhere.
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